Enhancing Biological Control to Stabilize Western Orchard IPM Systems

Vincent P. Jones, Shawn Steffan, Jay Brunner, Elizabeth Beers, Jessica Goldberger, Karina Gallardo, Ute Chambers, Nicholas J. Mills, David Horton, Thomas Unruh, Peter Shearer, Steve Castagnoli

Department of Entomology, Washington State University Tree Fruit Research and Extension Center, Wenatchee, WA
1 Department of Crop and Soil Science, Washington State University, Pullman, WA
2 School of Economic Sciences, Washington State University Tree Fruit Research and Extension Center, Wenatchee, WA
3 Department of Environmental Science and Policy Management, UC Berkeley
4 USDA-ARS Wapato, WA
5 Oregon State University, Mid-Columbia Agricultural Research and Extension Center

Sustainable Pest Management Needs New Approaches

A Trickledown Moment

Integrated pest management (IPM) systems in western orchard systems (apple, pear, walnut) are in all a transition because:
- Pest problems for the past 50 years are being eliminated by federal legislation
- 20-38% of new pesticides have been registered to take their place
- Maturing disruption is allowing us to control our key pest in all three systems with greatly reduced pesticide inputs
- Management programs based on “pesticide replacement therapy” are resulting in more secondary pest outbreaks, and greater costs to the growers.

Our Rule: The transition period gives us the chance to design and implement environmentally sound IPM systems that are based on biological control (BC) - use of predators, pathogens, and parasitoids). Our team is focusing its efforts in three areas:
- Quantifying natural enemy abundance, diversity, and seasonal occurrence to predict pest outbreaks in the season when they need to be conserved
- Evaluating the physiological selectivity of the new pesticides on natural enemies so that we can maximize BC
- Synthesis of new and old information into optimal IPM programs and developing ways to speed educational outreach and adoption

Recognizing the Importance of Biological Control

What you don’t recognize can cost you

Sampling for natural enemies is difficult and rarely done. Many growers and pest management consultants are not concerned with BC except when it is absent. Using a simple life-table simulation, we have shown how even 25% additional mortality can dramatically change the pest pressures after one or two generations making management programs more effective.

Developing New Sampling Tools

We can improve accuracy and ease of use

We are developing attractant lures to quantify natural enemy abundance, diversity, and importance. However, building a practical lure requires a constant release rate over a long period of time. Our lures are primarily volatiles that the pest releases when damaged by insect feeding and vary in chemical class and volatility. We have developed lures using polyethylene tubing that provide constant release rates >20X in the field.

Attractants Show Diversity of Natural Enemies

The different lures we have allow us to capture a wide range of natural enemies. There are certain specialists that are better represented, but overall, we can use the different lures to evaluate the complex of natural enemies occurring in a particular orchard.

Sampling Results Can Color Reality

One of our lures is highly attractive to the lacewing, Chrysopa nigricornis. The data show how the traditional sampling method and our lure affect our perception of the importance of BC. Not knowing the true population levels risks confusing the importance of BC and poor management decisions.

Comparison of use of traditional sampling methods and HIPV attractants developed in this project. Numbers come from five different apple orchards sampled 2-3 times a week from March – October using limb-tapping from 50 trees per orchard. Four attractant traps were in the same block and sampled once a week during the same period.

Predicting When Natural Enemies Occur is Key to Management

Proper Timing Minimizes Pesticide Exposures

The attractant lures not only tell us what is in the orchard, but also when. We can use this information to develop heuristically models to determine natural enemy phenology. The graph on the right shows such a model for the lacewing C. nigricornis is three Washington apple and two California walnut orchards. As additional data are available, we will refine and validate the model and then use it to modify our management programs to conserve this key natural enemy.

New Pesticides Require New Evaluation Methods

Sublethal Effects on Natural Enemies Are Now the Rule

The new pesticide chemistries often have sublethal effects that cannot be characterized by simply increased mortality. Instead, they often cause sterility, altered sex ratios, or affect natural enemy behavior. As such, our laboratory assays are now focused on how pesticides affect population growth.

Using Laboratory Mesocosms to Mimic Reality

The predator Galendromus occidentalis is the key pest of the spotted spider mite (TSSM) in Western orchards. The chart on the right shows how different pesticides affect the population growth rates of both the predator and its prey. Materials that suppress G. occidentalis need to be avoided to prevent the need for sprays targeted at TSSM. Materials that allow G. occidentalis to survive while reducing TSSM levels are selective and can be used to “correct” imbalances in the predator/prey ratios in the field.

Field Studies Verify Lab Data and Reveal New Relationships

Woody apple aphid is increasing in pest status with the new pesticide management programs. In a large field test last year, we found that the first spray of the season “sets the tone” for BC, although a disruptive spray applied later can eliminate the advantage of using a “softer” first treatment. Our results also showed the number of WA apple colonies increased in plots where earwigs were inhibited by the pesticide treatments.

Cost of Implementing Enhanced BC

A Broad Perspective on Cost-Benefit Analysis Needed

Typical economic studies on the use of biological control focus solely on the number of pesticides reduced or the value of the commodity saved. However, costs associated with reduced numbers of sprays ignore environmental impacts, worker safety, and market opened by eliminating pesticide residues. Project members are starting the analysis by evaluating nine hypothetical pesticide management scenarios which differ in their initial pest pressures and levels of biocontrol.

Preliminary results show that scenarios relying more on the new pesticides plus BC at all initial pest pressures present lower costs for labor and machinery application when compared with other scenarios. We are currently performing additional analyses that will help quantify biocontrol cost-benefits in the long run.

Speeding Up Adoption of BC

We Can’t Wait for Years for Adoption

Understanding where growers and IPM consultants obtain information and the breakdown of their current knowledge is crucial in allocation of resources for future educational efforts. We are currently surveying the California walnut growers and will be extending the survey to Washington and Oregon Pear growers in 2011, and Washington apple growers in 2012. The outreach part of the grant will be based heavily on the results of these surveys.

Short-Circuiting the Educational Process

Making the Complex Simpler, Cheaper, and More Efficient

The complexity of the new management programs and the time-sensitive nature of IPM information requires a new look at how educational programs are delivered. The WSU-DAS Decision Aid System is a key aspect of how we need to give IPM practitioners access to IPM information in a timely fashion. WSU-DAS integrates in one location:
- Weather data from WSU-AgWeather Net
- Site-specific weather forecasts from NOAA
- 10 insect models
- 3 disease models
- 1 horticultural model
- Time-specific management recommendations
- Pesticide recommendation databases
- Seasonally appropriate learning modules to provide a users information on key management issues and needs.

Our survey in 2008 showed that DAS was valued by the users at ~$17M/year and covered nearly the entire fruit industry. Using DAS allows us to make changes that are propagated to the users each time they log on to the system. This year we will also have the ability to automatically switch between English and Spanish versions of the system.

Outreach to Stakeholders and Peers

The Job’s Not Done Until the Technology is Adopted

The project has nearly 25% of its funding earmarked for outreach and education. Our job is to develop the new management programs using the research occurring within the first three years of the project, package that into the most useful format, and deliver it to our stakeholders and peers. As part of the grant, we are developing a web site (enhancebc.wsu.edu) with updates on the project, and information in progress and preliminary results. Field days will also be held in all three participating states and we will work as a team to integrate the new knowledge into our management programs for all three crops.

Acknowledgements:

This poster gives an overview of results from the first year of our $4.5M project (half USDA-NIFA SCRIF funds, half matching funds). We gratefully acknowledge our matching fund sources which include: Washington Tree Fruit Research Commission, California Walnut Board, Washington State University, University of California at Berkeley, and Oregon State University. We also thank our Advisory Committee Members in each state: California Mike Devencenzi, Carolyn Pickel, Jed Walton Oregon Rich Gavin, Bruce Deckler, Phil Van Buskirk Washington Dan Flick, Nick Stephens, Karen Lewis and our three outside scientists: Dr. Marshall Johnson (UC Riverside) Dr. Doug Walsh (WSU- Prosser) Dr. Gary Judd (Agriculture and Agri-Food Canada, Summerland, BC)